2SC_{1&5}

LYCEE PILOTE MONASTIR

DEVOIR DE CONTROLE N°5

MATHEMATIQUES

Prof: MOHAMED BENZINA

EXERCICE 1 (8 PTS)

Soit la suite (U_n) définie sur IN par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n + 1 ; n \in IN \end{cases}$

- 1) a) Calculer U₁ et U₂
 - b) Vérifier que la suite (U_n) n'est ni arithmétique ni géométrique
- 2) Soit (V_n) la suite définie sur IN par $V_n = 1 + U_n$
 - a) Montrer que (V_n) est une suite géométrique de raison 2
 - b) Exprimer V_n puis U_n en fonction de n.
- 3) Soit $S = U_1 + U_2 + \dots + U_n$. Exprimer S en fonction de n
- 4) Soit le nombre N=2014b12a, avec a et b deux chiffres. Déterminer a et b pour que N soit divisible à la fois par V_2 et U_1

EXERCICE 2 (9 PTS)

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Soit \mathscr{C} l'ensemble des points M (x, y) tels que $x^2 + y^2 6x 2y + 8 = 0$
 - a) Montrer que $\,\mathscr{C}\,$ est un cercle dont on déterminera le centre C et le rayon
 - b) Déterminer les coordonnées des points A et B intersection de 🕝 avec l'axe des abscisses
- 2) Soit Δ_m la droite d'équation y = mx, m est un réel
 - a) Déterminer les valeurs de m pour que Δ_{α} soit tangente à $\operatorname{\mathscr{C}}$
 - b) Déterminer les coordonnées du points H projeté orthogonal de C sur $\Delta_{_{\rm I}}$
 - c) Vérifier que H appartient à ${\mathscr C}$
 - d) Calculer alors par deux méthodes différentes la distance du point C à la droite $\Delta_{_{\rm I}}$
- 3) Soit la droite D: x + y 2 = 0.
 - a) Montrer que D est perpendiculaire à (OH)
 - b) Montrer que D est la médiatrice du segment [OH]

EXERCICE 3 (3 PTS)

Soit m un réel et Δ_m la droite d'équation : (m+2)x - (m+1)y + m = 0.

- 1) Montrer que toutes les droites $\,\Delta_m$ passent par un point fixe que l'on déterminera.
- 2) Soit le point B(0,1)

Déterminer les réels m pour que la distance du point B à la droite $\,\Delta_{\rm m}$ soit égale à 1

PROF:BENZINA.M